- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Al_Ba'ba'a, Hasan_B (2)
-
Nouh, Mostafa (2)
-
Chen, Vincent_W (1)
-
Juhl, Abigail_T (1)
-
Willey, Carson_L (1)
-
Yousef, Hosam (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A blueprint for truncation resonance placement in elastic diatomic lattices with unit cell asymmetryElastic periodic lattices act as mechanical filters of incident vibrations. By and large, they forbid wave propagation within bandgaps and resonate outside them. However, they often encounter “truncation resonances” (TRs) inside bandgaps when certain conditions are met. In this study, we show that the extent of unit cell asymmetry, its mass and stiffness contrasts, and the boundary conditions all play a role in the TR location and wave profile. The work is experimentally supported via two examples that validate the methodology, and a set of design charts is provided as a blueprint for selective TR placement in diatomic lattices.more » « less
-
Al_Ba'ba'a, Hasan_B; Willey, Carson_L; Chen, Vincent_W; Juhl, Abigail_T; Nouh, Mostafa (, Advanced Theory and Simulations)Abstract Phononic crystals exhibit Bragg bandgaps, frequency regions within which wave propagation is forbidden. In solid continua, bandgaps are the outcome of destructive interferences resulting from periodically alternating material layers. Under certain conditions, natural frequencies emerge within these bandgaps in the form of high‐amplitude localized vibrations near a structural boundary, referred to as truncation resonances. In this paper, the vibrational spectrum of finite phononic crystals which take the form of a one‐dimensional rod is investigated and the factors that contribute to the origination of truncation resonances are explained. By identifying a unit cell symmetry parameter, a family of finite phononic rods, which share the same dispersion relation, yet distinct truncated forms, is defined. A transfer matrix method is utilized to derive closed‐form expressions of the characteristic equations governing the natural frequencies of the finite system and decipher the truncation resonances emerging across different boundary conditions. The analysis establishes concrete connections between the localized vibrations associated with a truncation resonance, boundary conditions, and the overall configuration of the truncated chain as dictated by unit cell choice. The study provides tools to predict, tune, and selectively design truncation resonances, to meet the demands of various applications that require and uniquely benefit from such truncation resonances.more » « less
An official website of the United States government
